4 research outputs found

    Networking and Application Interface Technology for Wireless Sensor Network Surveillance and Monitoring

    Get PDF
    Distributed unattended ground sensor networks used in battlefield surveillance and monitoring missions, have proven to be valuable in providing a tactical information advantage required for command and control, intelligence, surveillance, and reconnaissance planning. Operational effectiveness for surveillance missions can be enhanced further through network centric capability, where distributed UGS networks have the ability to perform surveillance operations autonomously. NCC operation can be enhanced through UGSs having the ability to evaluate their awareness of the current joint surveillance environment, in order to provide the necessary adaptation to dynamic changes. NCC can also provide an advantage for UGS networks to self-manage their limited operational resources efficiently, according to mission objective priority. In this article, we present a cross-layer approach and highlight techniques that have potential to enable NCC operation within a mission-orientated UGS surveillance setting

    VIGILANT: "Situation-Aware" Quality of Information Interest Groups for Wireless Sensor Network Surveillance Applications

    Get PDF
    Effective situation awareness is a critical element for decision support in a wide range of military and para-military operational surveillance scenarios. Effective situation awareness in a surveillance scenario can greatly increase operational effectiveness, by improving the quality and timeliness of decisions. In this paper we outline a three level integrated design approach to promote situation awareness. Our approach allows deployed wireless sensor nodes to efficiently self-organise into dynamic clusters, based on a current common perceived threat situation ( context). Firstly our distributed predator aware situation assessment system ( PORTENT) models, detects and presents, in terms of quality of information (QoI), potential situations occurring within an uncertain environment. Secondly, we utilise a Bayesian belief network to understand the significance associated with the potential situation. Finally in order to obtain a better shared awareness we have developed a "context aware" service protocol that supports group formation and efficient management of sensor network assets. By combining this three level approach, we present our VIGILANT "situation aware" QoI interest group system. Extensive simulations have been undertaken to verify the VIGILANT concept, to demonstrate the effectiveness of our approach, in improving performance for network management efficiency, through utilisation of a shared "context" service provision time and QoI surveillance presentation

    VIGILANT+: mission objective interest groups for wireless sensor network surveillance applications

    Get PDF
    A system termed VIGILANT+ is outlined, which utilises situation awareness for the purposes of enabling distributed, autonomic, sensor management, so that savings on consumption of network resources can be achieved. VIGILANT+ is a novel proposition allowing deployed, unattended, wireless sensor nodes to self-organise into dynamic groups and self-manage their transmissions efficiently, according to a current common mission objective. First, a distributed situation assessment system named PORTENT model detects and characterises potential situations occurring within an uncertain environment, using the metric, quality of surveillance information. Secondly, a Bayesian belief network is utilised to understand and analyse the significance associated with the potential situation, primarily to enable deployed sensors to self-organise and assign themselves to mission objectives autonomously. Thirdly, a system is introduced for distributed autonomic transmission control, which enables the efficient management of sensor network resource consumption. Simulations have been undertaken to verify the integrated VIGILANT+ concepts and to demonstrate the effectiveness of the proposed approach in improving network efficiency, without compromising the presentation of mission surveillance utility
    corecore